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König’s conjecture

In the interplay of group theory with some other branches of mathematics,
a typical question is whether a given group can be represented as the
group of symmetries of certain mathematical object.

As to graphs, the problem of whether a group can be represented as the
automorphism group of a graph was considered at a very early stage of
graph theory.
A graph Γ ia a pair (V , E ), where V is a set and E is a set of 2-subsets of
V . Elements of V are the vertices and elements of E are the edges. An
automorphism of Γ ia a permutation of V that preserves E . All the
automorphisms form the automorphism group of Γ, denoted Aut(Γ).
König conjectured in his 1936 book “Theorie der endlichen und
unendlichen Graphen’, the first textbook on the field of graph theory, that
every finite group is the automorphism group of a finite graph.
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Frucht’s theorem

König’s conjecture was proved by Frucht in 19391.

In 1949, Frucht2 proved a stronger version stating that every finite
group is the automorphism group of a cubic graph (every vertex is
adjacent to exactly three vertices).
In 1957, Sabidussi3 proved that for all integers k > 3, every finite
group is the automorphism group of a k-valent graph (every vertex is
adjacent to exactly k vertices).

In the above theorems, the group may not act transitively on the vertex
set and may not have the same order as the graph.

1R. Frucht, Herstellung von Graphen mit vorgegebener abstrakter Gruppe,
Compositio Math., 6 (1939), 239–250.

2R. Frucht, Graphs of degree three with a given abstract group, Canadian J.
Math., 1 (1949), 365–378.

3G. Sabidussi, Graphs with given group and given graph-theoretical
properties, Canadian J. Math., 9 (1957), 515–525.
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Graphic regular representation

A graph Γ is called a graphic regular representation (GRR) of a group G if
Aut(Γ) ∼= G acts regularly on the vertex set of Γ.
After considerable work by many authors, Godsil at the end of 1970’s4 was
able to determine which finite groups have a GRR.
However, a Sabidussi-like theorem concerning GRRs of a prescribed valency
is still far out of reach — even for a Frucht-like theorem on cubic GRRs5.
In 2002, Fang, Li, Wang and Xu6 conjectured that every finite nonabelian
simple group has a cubic GRR and tetravalent GRR.

4C. D. Godsil, GRRs for nonsolvable groups, Algebraic methods in graph
theory, Vol. I, II (Szeged, 1978), pp. 221–239, Colloq. Math. Soc. János
Bolyai, 25, North-Holland, Amsterdam-New York, 1981.

5H. S. M. Coxeter, R. Frucht and D. L. Powers, Zero-symmetric graphs,
trivalent graphical regular representations of groups, Academic Press, New
York-London, 1981.

6X. G. Fang, C. H. Li, J. Wang and M. Y. Xu, On cubic Cayley graphs of
finite simple groups, Discrete Math., 244 (2002), no. 1-3, 67–75.
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Cayley graph

Given a group G and an inverse-closed subset S of G \ {1}, the Cayley
graph Cay(G , S) of G with connection set S is the graph with vertex set
G and edge set {{x , sx} | x ∈ G , s ∈ S}.

Cay(G , S) is |S|-valent.
Cay(G , S) is connected if and only if S generates G .
Let R be the right regular representation. Then R(G) is a subgroup
of Aut(Cay(G , S)).
Conversely, a graph whose automorphism group has a subgroup G
regular on the vertex set is isomorphic to a Cayley graph of G .

Thus a GRR of a group G is a Cayley graph of G with smallest possible
automorphism group:
Cay(G , S) is a GRR of G iff Aut(Cay(G , S)) = R(G).
In this case, S is a generating set of G .
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Cubic GRRs of finite simple groups

The Fang-Li-Wang-Xu conjecture on cubic GRRs:

every finite nonbelian
simple group has a cubic GRR.

The alternating group An with n > 5 has a cubic GRR (Godsil 1983).
The Suzuki group 2B2(q) with q = 22c+1 > 8 has a cubic GRR
(Fang-Li-Wang-Xu 2002).
The 2-dimensional projective special linear group PSL2(q) with q > 4
has a cubic GRR iff q 6= 7 (Fang-X. 2016). In particular, PSL2(7) is a
counterexample to the Fang-Li-Wang-Xu conjecture.

Conjecture (Fang-X. 2016)
There are only finitely many finite nonabelian simple groups that have no
cubic GRR.
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More on cubic GRRs of PSL2(q)

If Cay(G , S) is a cubic GRR of G , then S either consists of three
involutions or contains exactly one involution.

Theorem (Fang-X. 2016)
Let G = PSL2(q) with q > 4.
(a) If Cay(G , S) is a cubic GRR of G , then S is a set of three involutions.
(b) If q 6= 7, then there exists three involutions x , y and z in G such that

Cay(G , {x , y , z}) is a cubic GRR of G .
(c) There exist involutions x and y in G such that the probability for a

randomly chosen involution z to make Cay(G , {x , y , z}) a cubic GRR
of G tends to 1 as q tends to infinity.
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Spiga’s conjectures

Inspired by our work, Spiga recently posed the following conjectures:

Conjecture (Spiga 2017)
(i) Except for a finite number of cases, every finite nonabelian simple

group G contains three involutions x , y and z such that
Cay(G , {x , y , z}) is a cubic GRR of G .

(ii) Except for a finite number of cases and for the groups PSL2(q), every
finite nonabelian simple group G contains an element x and an
involution y such that Cay(G , {x , x−1, y}) is a cubic GRR of G .

(iii) The proportion of cubic Cayley graphs (up to isomorphism) over a
finite nonabelian simple group G that are GRRs tends to 1 as |G |
tends to infinity.
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My result

Theorem (X. 2017+)

Let G be a finite simple group of Lie type of rank at least 9. Then there
exists an element x of prime order in G such that the probability for a
random involution y in G to make Cay(G , {x , x−1, y}) a cubic GRR of G
tends to 1 as |G | tends to infinity.

The theorem gives an affirmative answer to Spiga’s conjecture (ii) for
finite simple groups of Lie type of rank at least 9, and also gives
evidence for Spiga’s conjecture (iii).
The theorem implies that there are at most finitely many finite simple
groups of Lie type of rank at least 9 that have no cubic GRR, which
reduces the verification of our conjecture “Only finitely many finite
nonabelian simple groups have no cubic GRR” to finite simple groups
of Lie type of rank at most 8.
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A byproduct

Let G be a finite simple group of Lie type of rank at least 9. According to
the theorem, there exists an element x of prime order in G such that the
probability for a random involution y in G to make {x , y} a generating set
of G tends to 1 as |G | tends to infinity.

By a classic result of Liebeck and Shalev, most finite nonabelian
simple groups can be generated by an involution and an element of
order three7.
Recently, King proved that every finite nonabelian simple group can
be generated by an involution and an element of prime order8.

The byproduct is an asymptotic version of King’s result.

7M. Liebeck and A. Shalev, Classical groups, probabilistic methods, and the
(2,3)-generation problem, Ann. of Math. (2), 144 (1996), no. 1, 77–125.

8C. S. H. King, Generation of finite simple groups by an involution and an
element of prime order, J. Algebra 478 (2017), 153–173.
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Thank you for listening!
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